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12 SEU/SET Tolerant
Phase-Locked Loops

Robert L. Shuler, Jr.

contents

12.1 IntroductIon

The phase-locked loop (PLL) is an old and widely used circuit for frequency and
phase demodulation, carrier and clock recovery, and frequency synthesis [1]. Its
implementations range from discrete components to fully integrated circuits and
even to firmware or software. Often the PLL is a highly critical component of a
system, as for example when it is used to derive the on-chip clock, but as of this
writing no definitive single-event upset (SET)/single-event transient (SET) tolerant
PLL circuit has been described. This chapter hopes to rectify that situation, at least
in regard to PLLs that are used to generate clocks.

Older literature on fault-tolerant PLLs deals with detection of a hard failure, which
is recovered by replacement, repair, or manual restart of discrete component systems
[2,3]. Several patents exist along these lines (6349391, 6272647, and 7089442). A
newer approach is to harden the parts of a PLL system, to one degree or another, such
as by using a voltage-based charge pump [4,5] or a triple modular redundant (TMR)

Au: “voted” seems out voted voltage-controlled oscillator (VCO) [6]. A more comprehensive approach is to
of place here.	

harden b triplication and voting TMR all the digital pieces (primarily the dividerY P	 g(	 )	 g	 P^	 (P	 Y	 )
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of a frequency synthesis PLL [7], but this still leaves room for errors in the VCO and
the loop filter.

Instead of hardening or voting pieces of a system, such as a frequency synthesis
system (i.e., clock multiplier), we will show how the entire system can be voted.
There are two main ways of doing this, each with advantages and drawbacks. We
will show how each has advantages in certain areas, depending on the lock acquisi-
tion and tracking characteristics of the PLL. Because of this dependency on PLL
characteristics, we will briefly revisit the theory of PLLs. But first we will describe
the characteristics of voters and their correct application, as some literature does not
follow the voting procedure that guarantees elimination of errors. Additionally, we
will find that voting clocks is a bit trickier than voting data where an infallible clock
is assumed. It is our job here to produce (or recover) that assumed infallible clock!

12.2 VotIng Asynchronous sIgnAls

When voting synchronous signals, data are latched according to a clock edge and
can be unambiguously voted either before or after the clock edge. There are two
common ways of doing this, according to what is to be protected. Figure 12.1 shows
the two methods.

On the left we have a triplicated functional unit (usually memory, but could be
anything). A single voter removes errors introduced within any one of the units but
does not protect against errors in the voter itself or in anything prior to the triplicated
units. On the right everything is triplicated, including the voters, so all errors are
removed. As long as two of the three strings have a correct result, processing will
continue correctly.

When voting asynchronous signals, those such as clocks that are not synchro-
nized by some other signal, it is possible to have two correct signals and still get
an incorrect result. Suppose, for example, that “correct” means a signal of a given
frequency, such as the output of a clock multiplier. In Figure 12.2, signals X and Y
are correct, and signal Z is in error. But because X and Y are not perfectly in phase,
Z is able to influence the vote this way and that, producing anomalous results for the
voting result (maj – top signal), which is of incorrect frequency and has some transi-
tions that are much too fast. These extra transitions will violate timing constraints
and produce unpredictable errors if they occur on a clock signal.

FIgure 12.1 Single versus triple voters.
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FIgure 12.2 Phase-induced voting error.

While this example has been exaggerated for illustration, such an error can occur
even for a small phase difference between the two correct signals. To guarantee that
extra-transition errors (phase-induced voting error) will not occur, the phase dif-
ference between the two correct signals has to be smaller than the minimum pulse
width to which the voters will respond!

The voting guidelines we have so far may be summarized as (1) use a triple voter
configuration to protect against errors even in the voters, and (2) design your PLL so
that redundant units will operate closely enough in phase that phase-induced voting
errors will be avoided, as for example during the period when one unit is recovering
from an SEU/SET and running temporarily at a different frequency or with glitches
in its output. One more guideline is needed. What do you do if ultimately you wish to
get one reliable output, such as one system master clock? In this case you must eventu-
ally rely on a single voter (though you can still use triple voters internal to your PLL
system). The only type of voter that does not have a single SEU/SET susceptible point
of failure is a heavily overdriven force voter, or conflict voter, that uses many gates to
drive a single node. These gates should be spread out so that one single event will not
strike several of them, and they should be driven from independent sources, such as a
triple of prevoters. A rather elaborate example I have used is shown in Figure 12.3.

FIgure 12.3 Force voter for consolidating triple to single string.
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QBHigh	 2-Input Transition Nand Gate
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FIgure 12.4 Transition nAnd gate.

The special symbol in Figure 12.3 is not a NAND gate. It is a transition nAnd
gate (TAG) [8,9], also sometimes called a guard gate [10,11], broadly useful in
radiation-hardening-by-design (RHBD) technology. The circuit for it is shown in
Figure 12.4.

12.3 stAble Plls thAt MInIMIze
PhAse-Induced VotIng error

A PLL is a feedback circuit that measures the phase of a signal compared with some
reference and attempts to correct the phase of a local oscillator to match the reference.
The local oscillator is frequently a VCO but may also be a numerically controlled
oscillator, and in signal processing applications the whole PLL may be implemented
mathematically in firmware rather than using actual components. But when a PLL
must operate very fast and produce the clock on which digital logic depends, there is
no alternative but to implement it directly in hardware.

An analysis of charge-pump PLLs by Gardner [14] points out several stability Au: Refs 12 and 13
need to be cited before

issues. First, the continuous-time approximation used for the analysis is not valid ref 14. Please revise.

if the PLL loop bandwidth is high, and this introduces stability problems. For
the fastest recovery from SEU/SET tolerance we will want the highest bandwidth
practical. For clock generator PLL applications, it turns out it is very practical
to increase loop bandwidth. For frequency synthesizer PLL applications, used to
generate channel frequencies for communications systems, higher loop bandwidth
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FIgure 12.5 PLL versus normal feedback loop bode plot.

is not so practical. We will examine redundant PLL architectures appropriate to
both situations.

Second, frequency synthesis PLLs need to have second- or third- or higher-order
loop filters to reduce ripple on the VCO control voltage, Vctl, caused by charge-pump
operation and by the workings of fractional-N and sigma-delta frequency divid-
ers and associated compensation systems. Whereas second-order analog PLLs are
unconditionally stable, a second-order charge-pump-based PLL is a sampled data
system and is unstable with high loop gain. The characteristics of VCOs currently
preferred for high speed PLLs, which will be described in the next section, virtually
guarantee excessively high gain unless the designer takes careful steps to ensure
otherwise. With a third-order loop the situation is even worse. We will consider the
most effective ways to manage loop gain.

Because of the additional pressure toward instability due to the requirements of
an SEU/SET tolerant PLL, we will briefly review PLL stability and introduce non-
linear circuit considerations.

For any feedback loop to be stable and not oscillate, the feedback must be negative
at all frequencies for which the feedback loop gain is equal to or greater than unity.
PLLs are rarely completely stable. Their residual instability, the reasons for which
we will explore herein, shows up as continual oscillation in frequency, or phase, of
the local oscillator. This residual instability is a source of excess phase jitter and can
impair the ability to synchronize redundant PLLs in a fault tolerant circuit, and the
design techniques often used to combat it (lower bandwidth loop filters) can slow and
interfere with recovery from an SET or SEU.

Stability of a feedback circuit is often understood by means of a Bode plot, such
as in Figure 12.5. Loop gain is asymptotically plotted as a function of frequency.

60

40

20

v 0
a

–20
w
0
a –40

–60

–80

–100

K11326_C012.indd 297	 ^	 1/29/10 3:39:02 PM



298
	

Radiation Effects in Semiconductors

Master (clock in)

FIgure 12.6 PLL block diagram with divider for frequency synthesis.

In the case of the PLL, this is the frequency with which the loop control voltage
varies, not the frequency of oscillation of the VCO. The two are related of course
by the transfer function of the VCO, which in the circuits we will be using is highly
nonlinear.

First consider a normal operational amp (op amp) feedback loop, with loop gain
represented by the dashed line. It is shown with two example poles in the loop
response, N1 and N2. A 90 degree phase shift is associated with each pole. As long
as no more than one pole is above the unity gain line, the circuit should be stable. If
not naturally the case, this is often arranged by use of a Miller effect equalization
capacitor to move one pole lower in frequency than any others.

A PLL, on the other hand, does not control the same thing it measures. It mea-
sures phase, but through the VCO it controls frequency. Phase is the integral of fre-
quency. Therefore, every PLL has an unavoidable pole at zero frequency. You cannot
move any other pole below it! This is illustrated by the dotted line, with poles P1
(infinitely off to the left on this logarithmic frequency scale plot) and P2. We have
optimistically shown P2 below unity gain, but that is often difficult to arrange.

Unfortunately, determining gain for a highly nonlinear circuit is problematic. The
best way is usually to run a transient simulation in Spice to see if the loop is stable.
The point of this discussion is that one must be careful in designing the loop filter
in a PLL. Below is a high-level block diagram level view of a PLL clock multiplier,
in Figure 12.6.

Phase or phase-frequency detectors usually output a series of pulses, not a nicely
behaved analog signal, so the loop filter must be introduced to smooth this signal.
Otherwise, the VCO would vary between some very high and very low frequency,
and its output would be unusable. The loop filter determines the bandwidth of the
PLL [1]. Here we get conflicting requirements. For recovery from SETs and SEUs,
the loop filter should have a high bandwidth so that the PLL performs like a tracking
PLL and rapidly resynchronizes after an upset. But in clock or synthesis applica-
tions, a narrow frequency range is desired, meaning a low filter bandwidth. This is so
that the VCO deviation over the counter cycle of the frequency divider will be small.
In a fractional-N or sigma-delta PLL, the VCO deviation over several counter cycles
must be small. A low filter bandwidth slows acquisition, either initially or after an
upset. Additionally, the loop filter forms a second pole in the loop gain, and a low
bandwidth loop filter moves that pole to the left on a Bode plot, toward a position of
higher gain on the PLL’s unavoidable pole-at-zero loop response characteristic.

Sometimes PLLs are designed with a tight (low bandwidth) loop for normal oper-
ation, and a separate means for initial “acquisition” of the target signal (the master
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clock, in the case of Figure 12.6). We do not recommend this for SEU/SET tolerant
PLLs, because an SET or SEU can cause an unplanned reacquisition at any time.
Having a separate means for acquisition might be possible but is difficult to verify
for every case.

The requirement for unplanned reacquisition at any time implies that we should
use a phase-frequency detector (PFD), not a pure phase detector (e.g., XOR gate,
traditional frequency multiplier). Phase-only detectors often are tricky to design
for initial or reacquisition, especially when using tight loop filters. The reason is
that without intrinsic frequency information, the phase-only detector can slip phase
repeatedly, and a tight loop filter will average the varying output of the phase-only
detector and produce false lock. The tighter the loop filter, the closer the false lock
frequency can be to the desired frequency. It does not have to be at a harmonic of the
desired frequency.

A frequency synthesis or clock generator PLL can easily find itself operating
in the unstable region. The tight loop filter needed to control the frequency of the
synthesized signal, coupled with the inherently high gain of some high-speed VCOs
(which we will describe in the next section), places their loop filter pole above unity
gain. If the instability is small, they work anyway. A PFD is not a pure phase detec-
tor, so to some extent the unfortunate pole-at-zero is eliminated, but not completely.
But over the region where the PFD functions as a phase detector, basically when the
PLL is “locked” and tracking its input, the PLL control loop oscillates, producing
unwanted phase jitter. If this source of jitter can be reduced below the cycle driven
jitter (from alternating pulses out of the charge pump), it is no longer a concern. But
changing the loop parameters to make a PLL more SEU/SET tolerant can increase
instability. Figure 12.7 shows a plot of this instability in an original case and with
some modifications that a designer might use to minimize the jitter.

A quick way to understand what is going on in a PLL is to examine the loop
control voltage (Vctl in Figure 12.6), that is, the input to the VCO. In Figure 12.7 this
is the dark wavy line. Ideally the line would be flat, indicating no variation in the

Original Loop Filter 	 25x Lower Loop Filter Lower Gain via Higher Vctl

0.5	 0.6	 0.7
	

5	 6	 7	 1.0	 ??

Time (us)

FIgure 12.7 PLL instability management, comparing approaches.
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(oscillator feedback)

FIgure 12.8 Current-starved inverter loop VCO.

frequency the VCO is requested to produce. A common type of VCO used in high-
speed complementary metal-oxide semiconductor (CMOS) PLLs is the current-
starved inverter loop, such as shown in Figure 12.8.

The transfer characteristic of this type of VCO is such that when Vctl is near the
threshold voltage, a very wide variation in frequency occurs for tiny changes in Vctl.

In other words, the voltage-to-frequency gain (often denoted Kvco) is very high near
Vthreshold . A small Kvco is beneficial in achieving low phase noise [15].

Kvco is not only high near Vthreshold; it is rapidly varying (i.e., highly nonlinear),
which in itself can cause stability problems [14]. The plots of Figures 12.7a, 12.7b,
and 12.7c were obtained using the schematic of a well-designed PLL, but operating
it at a lower than designed master input clock frequency so that Vctl would be too low
and the loop gain very high. The result is Figure 12.7a in which a steady oscillation
in Vctl produces a frequency instability that is unacceptable.

An alternative to the current-starved inverter VCO is a tank circuit. These typically
have smaller Kvco but also more narrow tuning ranges. And the necessity of having an
inductor makes them less desirable for fully integrated or redundant applications.

Figure 12.7b shows what happens if one uses the instinctive solution feedback
circuit designers would apply, that is, to “compensate” or dramatically lower the pole
that the designer can control, the loop filter cutoff frequency. This is lowered by a
factor of 25 in the middle figure. It appears to help slightly, perhaps by a factor of
two, but the acquisition and tracking characteristics are dramatically reduced, in fact
by a factor of 25! So while this sort of works, it might conflict with SEU/SET recov-
ery performance requirements. Why doesn’t this technique work better? It is because
the PFD is highly nonlinear. A large frequency deviation can have approximately the
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same PFD output as a modest deviation. This makes the loop less sensitive than it
should be to changes in the loop bandwidth.

Figure 12.7b shows what happens if instead of tampering with the loop filter, we
lower the VCO gain. Since the gain, if we are using a current-starved inverter VCO,
is determined by the bias of Vctl, we must figure how to raise Vctl. This can be done by
making the VCO slower, so a higher Vctl is needed to operate at the desired frequency.
To achieve this, 2.5 pF of capacitance was added to nodes O2 and O3. Modifying at
least two nodes, and an even number of them, assures a symmetric waveform within
the VCO, and that one node is not operated far beyond its cutoff frequency. One
could modify all nodes if one wished. Adding stages to the VCO is not a particularly
effective alternative for raising Vctl, because very many stages are required. Making
the circuit larger also would increase its SEU/SET error cross section.

Adding capacitance raised Vctl from around 0.46 V to 0.8 V, and the output fre-
quency stability was vastly improved. This was accomplished without significant
degradation of the acquisition and tracking characteristics of the PLL! It might seem
to an experienced feedback loop designer that changing the loop filter or loop gain
to have a given stability effect should be more equivalent. But due to the nonlinear
nature of the PFD, changes to the VCO predominantly affect stability, not acquisi-
tion. When there is a frequency mismatch between the VCO and the reference input,
the PFD outputs either low or high, with no indication of how low or how high. So,
excess gain in the VCO increases the frequency error without increasing the track-
ing “force.”

Figure 12.7d shows a charge-pump PLL in acquisition mode. Notice that Vctl

jogs around in an irregular way, due to the nonlinear interactions among the
VCO, PFD, and loop filter. It may take a long time for this to stabilize. During
acquisition, a frequency deviation is produced by the PLL to bring phase into a
matching condition. At match, the PFD produces no output. The phase momen-
tarily matches. But the frequency deviation persists until enough phase error
accumulates to drive the loop back the other way. For stability, one must guar-
antee this process eventually damps out, which may require a very slow (low
bandwidth) loop, not what we’d like for fast SEU/SET recovery. There are four
parameters by which such a “slow” PLL might be judged: acquisition time, jitter,
spectral purity, and phase error (with regard to the input reference). In the slow
design, both acquisition time and phase error are traded for jitter and spectral
purity. A small and varying phase error would be of no consequence in clock
generator applications of a PLL. But in a redundant voted PLL, if the three com-
ponent PLLs have independent phase errors, then phase-induced voting error
can result.

Figure 12.7e shows a PLL in which the PFD is modified to always produce an
output. This is done by presuming that if the phase is not ahead, it is behind, so the
PFD is always outputting a signal, or “always on.” Such an architecture reintroduces
the drawbacks of older more linear PLLs (the phase error bias), but notice that it
also has a more linear behavior without the chaotic jogs of the classic three-state
PFD. It is also free of dead-zone nonlinearity near-zero phase error and is easier to
analyze. Figure 12.7f combines VCO gain reduction with the always-on PFD to pro-
duce a very well-behaved loop. A clever designer could match the Vctl of the desired
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operating frequency of the VCO to the 50% duty cycle of the always-on PFD to cre-
ate a PLL that would have no static phase error, low jitter, and also quick recovery
from SEU/SET.

The faster a PLL acquires, the faster it will recover from an SEU/SET. Recovery
time is important in a voting arrangement, because while one module is recovering, a
second SEU/SET will cause an output error. Tight phase tracking is important to pre-
vent phase-induced voting error. The key to making a good redundant fault-tolerant
PLL is to start with a fast acquisition, low phase error, and single-string PLL design.

12.4 seu/set chArActerIstIcs oF Pll buIldIn g blocks

Figure 12.6 shows five building blocks in a basic PLL for frequency synthesis. We
describe the ring VCO in connection with Figure 12.8. The other four blocks can in
principle be anything the designer chooses, but we discuss a representative design
of each block here for purposes of understanding how their SEU/SET characteristics
might affect our overall design.

12.4.1 Ring VCO

The SEU/SET characteristic of the Ring VCO is straightforward and somewhat
unfortunate. It comes to an erroneous phase, from which it does not return on its
own. Each stage of the VCO has four transistors, about as many as a typical digital
logic gate. There are usually at least 5 stages, and sometimes 10 or more, so the cross
section of the VCO rivals that of any other part of the PLL, such as the frequency
divider. To make matters worse, the VCO is operated in current starved mode, which
means that less current is available for charge clearing after an ion strike than would
be the case in a high drive digital circuit.

Furthermore, an SET in any part of the VCO causes a phase displacement,
whereas in a digital circuit only half the circuit is susceptible most of the time. This
at least doubles the error cross section of the VCO. There are three effects in play. In
a digital circuit with multiple input gates, the state of the logic ignores many of the
inputs. For example, a NAND gate with one input low effectively ignores the second
input and any error on the second input. The VCO stages do have multiple inputs (the
signal and the control voltage), but neither of them is ever ignored.

Second, digital logic transistors that are in the ON or conducting state do not
experience a state change when an ion strikes, because ion strikes only increase con-
duction and do not decrease it. If the excess charge is cleared by the time the state
changes, no effect is noticed. Timing of the digital logic is important only insofar
as it meets minimum timing requirements. However in the VCO timing of the delay
through each stage is always critical. Even a slight change in timing due to extra time
required to clear charge from an ion strike will result in clock jitter and possible tim-
ing violations in the target circuit served by the clock.

Third, digital logic is sampled by the clock, and errors are counted only if they
persist through a clock edge. But the clock, and thus the VCO, is not sampled by
anything, and errors occurring at any time may result in system errors.
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The first goal of an SEU/SET tolerant design is to quickly return the VCO to a
correct state. This should be done regardless of the method of eliminating errors. If,
for example, one of three VCOs lingers in an incorrect state, the chances it will cause
phase-induced voting error increase. If it lingers long enough, there may even be a
second SEU/SET in another part of the circuit, causing an error.

There are several ways of quickly returning a VCO to a correct state, and in later
sections we will explore two of them in detail. One method is to use PLL parameters
that produce fast acquisition and tracking. Presumably this will also result in fast
correction. Fast correction will not prevent an error on the output and so must be
used in combination with some other scheme for eliminating errors. But it will pre-
vent the VCO from lingering in an incorrect state and thus minimize the probability
of phase-induced voting error, or accumulation of a second error. The problem with
fast acquisition and tracking is that, as described already, it is often at odds with
frequency and phase stability, or tightness of tracking.

Another method of quickly returning a VCO to a correct state is to have three
VCOs and vote them [12]. This works so quickly that it also eliminates errors.
However, it eliminates only errors from the output of the VCO, if taken from the
voter output, not from other parts of the PLL. Still another method is to vote only the
output of the entire PLL (with two other identical PLLs) and to allow the feedback
loop to resynchronize any PLL that experiences an SEU/SET induced error. We will
explore both of these in a subsequent section.

12.4.2 FRequenCy DiViDeR

The frequency divider, needed when the PLL is to provide frequency synthesis, is a
digital state machine, and an SEU putting it in a different state is probably the most
disruptive of any SEU/SET effect in a PLL. It is possible of course to vote every bit
in the state machine [7]. Or one can allow the feedback loop of the PLL to eventually
resynchronize the divider by reacquiring lock on the master clock input. In either
case, a divider that minimizes SEU susceptibility is a good idea, such as a fully
synchronous design.

It is very important to note that if the frequency divider is protected by voting,
this cannot be done using the same components that otherwise participate in some
other PLL voting scheme. For example, if three complete PLLs are voted, differ-
ences in the frequency dividers are essential to allow a failed PLL to resynchronize
itself with the others.

12.4.3 S igma-Delta FRaCtiOnal-n FRequenCy DiViDeRS

Sigma-delta or fractional-N frequency dividers use a dithering scheme to divide the
VCO frequency by a sequence of integers that averages to a noninteger value. This
creates two problems for the designer of a fault tolerant PLL. First, there is a lot
more logic in the frequency divider, which must be protected from SEU/SET. This is
inconvenient but not conceptually difficult. If voting is used, care must be taken that
no internal state is left unprotected and allows an error to persist.
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Second, either the variability of the output of the dithered frequency divider must
be averaged over a longer period, implying a lower bandwidth loop filter and leading
to problems we have already discussed, or compensation circuitry must be used to
tune out the expected variations. Compensation circuitry can be analog in nature,
getting involved with the charge pump, and can be both more susceptible to SET and
more difficult to protect. A strategy of protecting an entire PLL is advantageous for
such a situation. In the case where this circuit is protected by voting, care must be
taken to vote every internal state variable so that there are no persistent errors.

12.4.4 PhaSe-FRequenCy DeteCtOR

There are many types of phase detectors and phase-frequency detectors [1,13]. For
clock recovery PLLs, which examine data transitions and synthesize the implied
clock, a PFD that tolerates missing transitions is required. For frequency synthesis,
we are already in the position that the PLL is generating many more transitions than
are in the master clock and, so for synthesis, PFDs are desired that use every clock
edge, both leading and trailing, and produce immediate correction signals if the edge
is leading or lagging. In the interest of setting a manageable scope for the current
discussion, we limit ourselves to the second type. These are usually three-state or
higher-logic circuits. While better acquisition performance can be obtained with
complex higher-state PFDs, the additional states also increase SEU susceptibility and
increase the difficulty of resynchronization. An ordinary three-state PFD as shown
in Figure 12.9 always resets itself when a clock edge has occurred on both inputs.

For most radiation-tolerant applications, we would use fully synchronous flip-
flops. However, this PFD circuit works only with an asynchronous reset. The circuit
of Figure 12.9 updates on leading edges of master and slave signals. One source
of phase jitter in a frequency synthesizer is the PFD update cycle, because Vctl will
typically vary from some minimum to maximum value between PFD updates. The
update cycle can be cut in half, reducing phase jitter, by using two PFD circuits and
negating the inputs to the second one so that it updates on trailing (falling) edges.

D	 Q 1	 111,	 Fast

	

Slave	 I QB

(from frequency divider)
resetb

^- Clb

D	 Q	 Slow
DFFC

	

Master	 QB

FIgure 12.9 Single-edge three-state PFD.
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As soon as both flip-flops have triggered (i.e., an edge is detected on both input
signals) the flip-flops are reset, clearing any SEU condition.

12.4.5 ChaRge PumPS

There is a bit of an overlap when both the signals “fast” and “slow” are high,
because of the time it takes the reset to operate. In a high-speed PLL this can be a
significant error factor. If perfect charge pumps are used, in theory the “fast” and
“slow” signals each result in a fixed current pulse into the loop filter and cancel
out. But current-oriented charge pumps are relatively more susceptible to SEU/SET
than a voltage-oriented charge pump (voltage with a high impedance switch) [4].
The larger number of transistors in a near-ideal current pump, and their lower drive
strengths, increase both the exposure to SETs and the time required for recovery
from SETs.

In the case of the voltage-oriented charge pump, the overlapping “fast” and “slow”
signals do not exactly cancel, and phase error is produced. This can be eliminated by
using pulse trimmers to reduce the length of these two signals by exactly the amount
of the reset delay. Figure 12.10 shows a trimmer circuit that uses the same flip-flop
reset to time the amount of trimming. Figure 12.11 shows the complete dual-edge
PFD with trimmers and voltage-oriented charge pumps (switches are minimum-size
pass gates).

A good bit of the literature on precision PLL design, such as frequency synthe-
sizers for communication circuits, depends on a sophisticated current-based charge
pump with precisely matched currents. There are a couple of approaches for dealing
with this situation. One is to simply use the strategy of protecting the entire PLL,
as we have been advocating, rather than its parts. SET recovery time will not be
fast, but there will be errors only if a second SET occurs before the recovery from
the first is complete. While this would be disastrous in a clock circuit, it is probably
acceptable in a communication circuit where the communication protocol provides
other means of handling errors. In other words, SEU/SET performance of frequency
synthesizers is less critical than for clock generator circuits.

FIgure 12.10 Reset pulse trimming circuit.
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FIgure 12.11 Dual-edge PFD with voltage-based charge pump.

A second strategy is to address issues with the voltage-based charge pump.
Unbalanced charge injection can be addressed by Vctl tuning as already described,
although this might be hard to make process-independent. Power supply noise is
also a commonly voiced concern for voltage-based charge pumps (though also for
current-based pumps). Lee and Wang [16] have shown significant benefits from using
separate regulators for the VCO and the charge pump.

12.4.6 lOOP FilteR

The last block of the PLL is the loop filter. As emphasized, the ideal loop filter would
not be anything more than a single-pole RC filter. Second- and third-order loop fil-
ters will lead to longer acquisition time and also longer recovery times from SET/
SET errors. With the description in Section 12.3 of how PLLs can be stabilized, one
may be able to solve phase jitter problems by modifying the VCO gain. If necessary,
the always-on PFD technique could be used. However, as with the charge pump, a
large amount of technical literature would have to be disregarded to follow our most
aggressive recommendation. We caution only that, when using a higher-order filter,
make sure to examine the SET recovery time. If an SET disturbance causes millisec-
onds of thrashing around, consider reducing the VCO gain.

Another consideration is simulation time. If you are designing a nonredundant
PLL, it is sufficient to get one correct simulation for each frequency of operation, and
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FIgure 12.12 Loop filter.

you are done. But when designing a fault-tolerant PLL, it is necessary to consider
the response to a variety of faults, increasing the number of simulations. In each
simulation, one must wait for acquisition, inject a fault, and wait for it to settle, so
each simulation is longer. It is tempting to incompletely verify the design in such a
situation. The techniques we have outlined to reduce acquisition time will greatly
speed up verification by allowing shorter simulations.

Ideally the RC loop filter would be just resistors and capacitors. In practice, in a
CMOS circuit you can obtain an approximate RC filter by using resistor-connected
field-effect transistors (FETs) for the resistor and the gates of FETs for the capacitor.
This has the advantage of being process-independent and relatively scalable, pos-
sibly requiring no change when moving to new processes.

Figure 12.12 shows such a loop filter. It is important to use a symmetric pair of
resistor connected FETs connected in opposite directions to avoid a nonlinear pref-
erence for charging the filter in one direction or another. This circuit uses a width/

Au:Long form of	 length (W/L) of 3/100, giving quite a high impedance. Because of threshold voltages,
W LOW	

the circuit will not quite charge to either supply rail. For the capacitor, enough FETs
with large area gates are connected in parallel to make whatever value is needed.

It would seem that an SET in the loop filter might be significant, but in practice it
might be of less consequence. If there is a lot of charge stored on the capacitor com-
pared with the charge generated by an ion strike, an SET has less effect. Any effect
it does have will be eliminated by the redundant voting techniques that will be used
to protect other parts of the circuit.

12.5 APPlyIng redundAncy to Plls

It is possible to improve or vote or otherwise mitigate SEU/SET for the individ-
ual components of PLLs. This usually leaves some component, such as the loop
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FIgure 12.13 Output voted PLL.

filter with an analog output, unprotected. It is the purpose of this chapter to pro-
pose comprehensive treatments. These can be simpler, since a good PLL design is
merely repeated three times and voted, with a single voter instead of many voters.
But there are tricks and considerations to such an arrangement that require a little
more examination.

12.5.1 OutPut-Only VOting methOD

The first and simplest arrangement, shown in Figure 12.13, is to vote only the output.
This arrangement relies on the individual PLLs to resynchronize themselves with
the master input clock after an upset condition. This is a function they are already
designed to do when they are turned on. No PLL ever looks at what is going on in
another PLL, but only at the input signal. So if it works at power up, it will also
work following an SEU/SET. The question with this design is whether it will work
well enough to avoid phase-induced voting errors. And that will largely depend on
whether you have designed a good PLL!

When you run a SPICE simulation on three identical PLLs with identical start-
ing conditions, the results will appear identical. But real PLLs will not be identical.
However, when you disturb one of the PLLs by injecting a simulated SET, then as it
recovers you will see what the relative tracking of your PLL design might be in the
real circuit. Figure 12.14 shows a plot of two PLLs.

The light gray line is the master clock, and the darker highlighted waveforms at
8× frequency are the two PLL outputs. The two lines at about 0.65 V are the two
Vctl ’s. Each horizontal axis tick mark is about 1 ns, so the difference in the two PLL
outputs is a small fraction of a nanosecond, probably around 100–150 ps. A large
voter such as shown in Figure 12.3 will be slow enough in this technology (90 nm)
that voting these signals should not produce any phase-induced errors. However, if it
gets any worse, it won’t work.
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FIgure 12.14 Comparing outputs of identical PLLs after disturbance.

The thing that might make it get worse is trying to fix a stability problem by dra-
matically lowering the loop filter bandwidth. This makes the control loop very slow,
and it could be a long time, if ever, before the outputs line up again. Whether you
fix stability problems by lowering the VCO gain or with the loop filter, you should
carefully check the worst-case disturbances to make sure your PLL outputs will line
up again. You can also check for the effect of process variation by changing the W/L
of a bias transistor in one of the ring VCOs by an amount of half a lambda, or half
the minimum feature size of your process. This model approximates the worst-case
process parameter variation that you would normally see.

12.5.2 the VCO VOting methOD

As mentioned earlier, the VCO itself can be voted, which guarantees that all three
VCOs quickly return to lock step. So what do you then do about the rest of the PLL?

As far as the PFD, charge pumps and loop filter are concerned; whether you have
to do anything depends on the amount of jitter caused by an SEU/SET on these
components. The effect of an SEU/SET on any of these components is some delta
to Vctl, which will result in an erroneous delta to the VCO frequency, but not any
discontinuity in the output. It must be determined whether the worst case delta to
VCO frequency, and resultant phase deviation, is within desired operating limits of
the PLL.

The PFD will be cleared out every master (input) clock cycle. The worst case
is the delta frequency caused by one master clock cycle. Adjustments can be made
by changing charge-pump current, loop filter time constant, or VCO gain. While
the PFD could be protected by a complicated voting scheme, it is likely these other
adjustments will suffice.

An SET in the charge pump could last longer than a master clock cycle, since tiny
high impedance transistors are used. This is difficult to determine directly by heavy-
ion testing. It can be estimated by using laser testing or SPICE analysis, but in either
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case a calibration based on the transistor sizes used is advisable. Once the longest
error state is determined, analysis and adjustment proceeds in the same manner as
for the PFD.

An SET in the loop filter makes a small change in the charge stored in the loop
filter. Erroneous charge on the loop filter capacitor will eventually be eliminated by
operation of the PLL control loop. It will produce a small change in Vctl and, in turn,
a small change in VCO frequency. The problem is that it is difficult to quantify.

So with the PFD, the charge pump, and the loop filter we have three progres-
sively more difficult to quantify effects on Vctl. Here is the dilemma. The voted VCO
behaves like a single VCO, not three independent ones as in the voted output PLL. If
we are to have a single Vctl to control it, this Vctl will either be subject to SET errors,
or we will have to design a complex analog voter, which will itself be extremely chal-
lenging. If we replicate the PFD, charge pump, and loop filter and produce three Vctl

signals and separately drive the three VCOs, then there is no independent correction
of errors by loop action, because with the voted VCO it is just one loop. Errors in
the PFD will clear in one cycle. SETs in the charge pump will be removed by charge
collection processes. Errors in the three loop filters will eventually decay away if
the filters are passive RC circuits. So replicating these components and producing
three Vctl signals might be a feasible option. It seems to lack the positive assured
error removal of the voted output PLL design, but it is not particularly susceptible to
phase-induced voting error.

The problem with the frequency divider is different. An SEU on the frequency
divider will never be cleared unless you do something special to clear it. Because the
VCO is voted internally, the control loop of the affected PLL will never be allowed to
correct the divider. The PLL control loop and the VCO voting will be fighting each
other. This condition will persist, and the PFD of the failed PLL will constantly be
trying to adjust its loop filter to “make up” the lost phase, stored in the divider, but it
will never be able to. With only two good remaining PLLs, the next time one of them
experiences an SET/SEU the circuit output will be in error.

So to make the VCO voting method work, you have to provide some means of
correcting the dividers. The most obvious method is to replicate and vote the divid-
ers. The internal signals of the divider must be voted so that the voting corrects
their internal state. If only the outputs are voted, an erroneous count will simply be
perpetuated. It is possible to dream up other schemes, such as forcing the three divid-
ers to reset all at once, but these would become complicated. A simple scheme is to
drive each divider with one of the three VCO outputs. The output of the dividers can
either be from a triple output voter (preferred), driving replicated PFDs and so forth
as previously described, or a single output driving a single-string PFD, charge pump,
and loop filter if it can be determined that an SET impact does not disturb the VCO
frequency by more than the desired design specification.

The advantage of the VCO voting method is not having to worry about phase-
induced voting error. The VCO voting method can be used whenever it is too dif-
ficult to design robust PLLs that will remain in lock in spite of process parameter
variations and will return to lock after a disturbance. The drawback of the VCO
voting method is the difficulty of verifying that SETs in the PFD, charge pump, and
loop filter are within tolerance, or the ambiguity of the lack of positive removal of
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errors if these components are replicated without independent feedback correction.
Simulations suggest that errors in replicated charge pumps and loop filters decay
rather quickly, in tens or at most hundreds of nanoseconds, but this is has not been
confirmed by heavy-ion testing.

12.6 conclusIons

We have seen that to design a fault-tolerant PLL, we must start with a good PLL
design that will remain in tight lock to avoid phase-induced voting errors and will
reacquire quickly so that the vulnerable time after one PLL has been upset is mini-
mized. To design a good PLL has required a revisit of PLL stability theory and
consideration of nonlinear factors, such as the differing effects of stabilizing by
changing VCO gain versus changing the loop bandwidth.

We then examined two redundancy topologies that produce an entirely redundant
and fault-tolerant PLL. The simpler one votes only the output and relies on the PLL
feedback to resynchronize the failed PLL but is subject to phase-induced voting
errors if the PLLs do not sync up tightly.

The more complicated method keeps the VCOs in lock step but requires other
mitigation, especially of the frequency divider, to avoid a fight over control of the
loop, which would result in making a transient error permanent.

For frequency synthesizer applications, the required phase error is likely already
so small that phase-induced voting errors will not be an issue. These applications
also are more likely to require a complex frequency divider of the fractional-N or
sigma-delta type, which is tedious to mitigate for SEU/SET. So for frequency synthe-
sizer applications, the output voted PLL is highly recommended.

For clock generator applications, the phase error should be carefully reviewed
for potential voting problems. If there are any, they can probably be eliminated by
the techniques we have given, such as VCO gain reduction. In that case, again the
simpler output voted PLL is recommended.

If you have a PLL design that you simply must use but that does not control the
phase tightly enough for the simpler output voting method or that is sensitive to
device parameter or other variations, then the more complicated VCO voting method
should work, provided all state variables in the frequency divider are voted, and the
remaining components have no source of persistent error following an SET.

This analysis has been done for a frequency synthesis PLL of the sort needed for
an on-chip clock multiplier. Similar principles can be applied to other types of PLLs.
The output voted PLL has been fabricated and tested by the author. Components of
the VCO voted PLL have been investigated by Loveless at Vanderbilt [5,6,12], and a
VCO voted PLL has been simulated by the author.
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